Potentially eventually exponentially positive sign patterns

نویسندگان

  • Marie Archer
  • Craig Erickson
  • Rana Haber
  • Leslie Hogben
  • Xavier Martinez-Rivera
  • Antonio Ochoa
  • Minerva Catral
  • Chi-Kwong Li
چکیده

We introduce the study of potentially eventually exponentially positive (PEEP) sign patterns and establish several results using the connections between these sign patterns and the potentially eventually positive (PEP) sign patterns. It is shown that the problem of characterizing PEEP sign patterns is not equivalent to that of characterizing PEP sign patterns. A characterization of all 2× 2 and 3× 3 PEEP sign patterns is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on potentially power-positive sign patterns

In this note, some properties of potentially powerpositive sign patterns are established, and all the potentially powerpositive sign patterns of order ≤ 3 are classified completely. Keywords—Sign pattern; Potentially eventually positive sign pattern; Potentially power-positive sign pattern.

متن کامل

Potentially eventually positive double star sign patterns

In this work, the potentially eventually positive double star sign patterns are characterized. It is shown that, up to equivalence, an (m + n) × (m + n) double star sign pattern is potentially eventually positive if and only if it is a superpattern of four specific sign patterns. © 2012 Elsevier Ltd. All rights reserved.

متن کامل

Constructions of potentially eventually positive sign patterns with reducible positive part

Potentially eventually positive (PEP) sign patterns were introduced in “Sign patterns 1 that allow eventual positivity,” Electronic Journal of Linear Algebra, 19 (2010): 108–120, where it 2 was noted that A is PEP if its positive part is primitive, and an example was given of a 3× 3 PEP 3 sign pattern with reducible positive part. We extend these results by constructing n × n PEP sign 4 pattern...

متن کامل

Eventually Nonnegative Matrices and their Sign Patterns

A matrix A ∈ Rn×n is eventually nonnegative (respectively, eventually positive) if there exists a positive integer k0 such that for all k ≥ k0, A ≥ 0 (respectively, A > 0). Here inequalities are entrywise and all matrices are real and square. An eigenvalue of A is dominant if its magnitude is equal to the spectral radius of A. A matrix A has the strong Perron-Frobenius property if A has a uniqu...

متن کامل

Sign Patterns That Require or Allow

A matrix A is power-positive if some positive integer power of A is entrywise positive. A sign pattern A is shown to require power-positivity if and only if either A or −A is nonnegative and has a primitive digraph, or equivalently, either A or −A requires eventual positivity. A sign pattern A is shown to be potentially power-positive if and only if A or −A is potentially eventually positive.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014